Apolipoprotein E-derived peptides block alpha7 neuronal nicotinic acetylcholine receptors expressed in xenopus oocytes.
نویسندگان
چکیده
For decades, the pathology of Alzheimer's disease has been associated with dysfunction of cholinergic signaling; however, the cellular mechanisms by which nicotinic acetylcholine receptor (nAChR) function is impaired in Alzheimer's disease are as yet unknown. The most significant genetic risk factor for the development of Alzheimer's disease is inheritance of the epsilon4 allele of apolipoprotein E (apoE). Recent data have demonstrated the ability of apoE-derived peptides to inhibit nAChRs in rat hippocampus. In the current study, the functional interaction between nAChRs and apoE-derived peptides was investigated in Xenopus oocytes expressing selected nAChRs. Both a 17-amino acid peptide fragment, apoE(133-149), and an eight-amino acid peptide, apoE(141-148), were able to maximally block acetylcholine (ACh)-mediated peak current responses for homomeric alpha7 nAChRs. ApoE peptide inhibition was dose-dependent and voltage- and activity-independent. The current findings suggest that apoE peptides are noncompetitive for acetylcholine and do not block functional alpha-bungarotoxin binding. ApoE peptides had a significantly decreased ability to inhibit ACh-mediated peak current responses for alpha4beta2 and alpha2beta2 nAChRs. Amino acid substitutions in the apoE peptide sequence suggest that the arginines are critical for peptide blockade of the alpha7 nAChR. The current data suggest that apoE fragments can disrupt nAChR signaling through a direct blockade of alpha7 nAChRs. These results may be useful in elucidating the mechanisms underlying memory loss and cognitive decline seen in Alzheimer's disease as well as aid in the development of novel therapeutics using apoE-derived peptides.
منابع مشابه
Structural determinates for apolipoprotein E-derived peptide interaction with the alpha7 nicotinic acetylcholine receptor.
Neuronal nicotinic acetylcholine receptor (nAChR) signaling has been implicated in a variety of normal central nervous system (CNS) functions as well as an array of neuropathologies. Previous studies have demonstrated both neurotoxic and neuroprotective actions of peptides derived from apolipoprotein E (apoE). It has been discovered that apoE-derived peptides inhibit native and recombinant alph...
متن کاملInhibition of native and recombinant nicotinic acetylcholine receptors by the myristoylated alanine-rich C kinase substrate peptide.
A variety of peptide ligands are known to inhibit the function of neuronal nicotinic acetylcholine receptors (nAChRs), including small toxins and brain-derived peptides such as beta-amyloid(1-42) and synthetic apolipoproteinE peptides. The myristoylated alanine-rich C kinase substrate (MARCKS) protein is a major substrate of protein kinase C and is highly expressed in the developing and adult b...
متن کاملPotentiation and inhibition of neuronal nicotinic receptors by atropine: competitive and noncompetitive effects.
Atropine, the classic muscarinic receptor antagonist, inhibits ion currents mediated by neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. At the holding potential of -80 mV, 1 microM atropine inhibits 1 mM acetylcholine-induced inward currents mediated by rat alpha2beta2, alpha2beta4, alpha3beta2, alpha3beta4, alpha4beta2, alpha4beta4, and alpha7 nicotinic receptor...
متن کاملRic-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells.
Expression of functional, recombinant alpha7 nicotinic acetylcholine receptors in several mammalian cell types, including HEK293 cells, has been problematic. We have isolated the recently described human ric-3 cDNA and co-expressed it in Xenopus oocytes and HEK293 cells with the human nicotinic acetylcholine receptor alpha7 subunit. In addition to confirming the previously reported effect on al...
متن کاملNeuronal nicotinic threonine-for-leucine 247 alpha7 mutant receptors show different gating kinetics when activated by acetylcholine or by the noncompetitive agonist 5-hydroxytryptamine.
Mutation of the highly conserved leucine residue (Leu-247) converts 5-hydroxytryptamine (5HT) from an antagonist into an agonist of neuronal homomeric alpha7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We show here that acetylcholine (AcCho) activates two classes of single channels with conductances of 44 pS and 58 pS, similar to those activated by 5HT. However, the mean open...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 316 2 شماره
صفحات -
تاریخ انتشار 2006